Computational Biology

Course ID
7ΕΒ15
Επίπεδο
Undergraduate
Είδος
Optional (compulsory)
Εξάμηνο
8
Περίοδος
Spring Semeter
ECTS
5
Ώρες Θεωρίας
3
Ώρες Εργαστηρίου
-

Instructor

Description

  • Introduction to Bioinformatics Algorithms: What is a bioinformatics algorithm? Representation of biological data as sequences. Basic algorithmic concepts: complexity, efficiency, correctness.
  • Algorithm Categories: Exhaustive (Brute-force), Greedy, Divide and Conquer.
  • Gene Prediction: Models such as Neural Networks, ORF detection. Training and evaluation of models. Comparison of prediction algorithms.
  • Recognition of Transcription Factor Binding Motifs: Motif representation, Position Weight Matrices (PWMs), consensus sequences. Motif finding algorithms: Exhaustive search, Expectation Maximization. Scanning genomic regions with motif scoring.
  • DNA Mapping via Partial Digestion
  • Transpositions and Genome Rearrangements: Genome assembly (genome rearrangement problem).
  • Programming Implementation and Case Study: Implementation of motif discovery, design of a simple gene predictor.

Textbooks/Bibliography

  • ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗΣ, NEIL C. JONES, PAVEL A. PEVZNER, ΕΚΔΟΣΕΙΣ ΚΛΕΙΔΑΡΙΘΜΟΣ ΕΠΕ, 1η/2010, ΑΘΗΝΑ
Skip to content